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For given ℓ ≥ 1, this value equals

[

E(1 − e−f(Y0))I{maxj=1−l,...,−1 |Yj |≤1} + E
(

e−f(Y0) − e−
P1

j=0 f(Yj)
)

I{maxj=2−l,...,−1 |Yj |≤1}

+ · · · + E
(

e−
Pℓ−1

j=0
f(Yj) − e−

Pℓ
j=0

f(Yj)
)

I{maxj=ℓ+1−l,...,−1 |Yj |≤1}

]

+
[

E
(

e−
Pℓ

j=0
f(Yj) − e−

Pℓ+1

j=0
f(Yj )

)

I{maxj=ℓ+2−l,...,−1 |Yj |≤1}

+ · · · + E
(

e−
Pl−2

j=0
f(Yj) − e−

Pl−1

j=0
f(Yj)

)]

= I
(1)
ℓ + I

(2)
ℓ .

Therefore

lim
ℓ→∞

lim
l→∞

I
(1)
ℓ = lim

ℓ→∞
E

(

1 − e−
Pℓ

j=0 f(Yj)
)

I{maxj≤−1 |Yj |≤1}

= E
(

1 − e−
P∞

j=0
f(Yj)

)

I{maxj≤−1 |Yj |≤1} ,

while

lim
ℓ→∞

lim sup
l→∞

I
(2)
ℓ

≤ lim sup
l→∞

[

E
(

e−
Pℓ

j=0
f(Yj) − e−

Pℓ+1

j=0
f(Yj)

)

+ · · · + E
(

e−
Pl−2

j=0
f(Yj) − e−

Pl−1

j=0
f(Yj)

)]

= lim
ℓ→∞

Ee−
Pℓ

j=0
f(Yj) − Ee−

P∞
j=0

f(Yj) = 0 .

�

8. Max-stable processes with Fréchet marginals

Max-stable processes and random fields have recently attracted some attention for modeling
spatio-temporal extremal phenomena. We give a short overview of results on the topic with special
emphasis on max-stable time series.

Recall from Section 2.2 that max-stable distributions are the only non-degenerate limit distribu-
tions of (normalized and centered) partial maxima of an iid sequence. In particular, an iid sequence
(Xt) with a max-stable distribution satisfies (2.7), i.e.,

c−1
n

(

max(X1, . . . ,Xn) − bn)
d
= X , n ≥ 1 ,

for suitable constants cn > 0 and dn ∈ R. Here we will assume without loss of generality that X

has a Fréchet distribution function Φα(x) = e−x−α
, x > 0, and then cn = n1/α and dn = 0.

A Fréchet random variable has the following representation which will be useful.

Lemma 8.1. Let 0 < Γ1 < Γ2 < · · · be an enumeration of the points of a unit rate homogeneous

Poisson process on (0,∞) independent of an iid sequence (Vi) of positive random variables with

EV α < ∞ for some α > 0. Then supi≥1 Γ
−1/α
i Vi has a Fréchet ΦEV α

α distribution.

Proof. Write N(t) = #{i ≥ 1 : Γi ≤ t}, t ≥ 0, for the unit rate Poisson process on (0,∞). Let (Ut)
be an iid sequence of random variables with a uniform distribution on (0, 1), independent of N and
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(Vt). We notice that for x > 0, using the order statistics property of N ,

P
(

sup
i≥1

Γ
−1/α
i Vi ≤ x

)

= lim
t→∞

E
[

P
(

sup
i≥1

Γ
−1/α
i Vi ≤ x | N(t)

)]

= lim
t→∞

E
[

P
(

sup
i≤N(t)

(tUi)
−1/αVi ≤ x | N(t)

)]

= lim
t→∞

E
[

PN(t)
(

(tU1)
−1/αV1 ≤ x

)]

= lim
t→∞

e−t P (V α
1 >xαtU1)

= lim
t→∞

e−x−α
R txα

0
P (V α

1
>y) dy

= e−x−α EV α
= ΦEV α

α (x) .(8.1)

�

In what follows, we will consider extensions of the concept of max-stable distributions to the
multivariate case. De Haan [59] introduced the notion of a (positive) max-stable process (Yt)t∈T ,

T ⊂ R, by requiring that for iid copies (Y
(i)
t )t∈T , i = 1, 2, . . ., of (Yt)t∈T ,

n−1/α( max
i=1,...,n

Y
(i)
t )t∈T

d
= (Yt)t∈T , n ≥ 1 .(8.2)

Then, in particular, all one-dimensional marginals of the process (Yt)t∈T are Fréchet distributed,

i.e. Yt has distribution Φ
c(t)
α for some function c(t) ≥ 0, t ∈ T .

Example 8.2. We consider an example from de Haan [59], p. 1195. Consider a unit rate homo-
geneous Poisson process on (0,∞) with points Γ1 < Γ2 < · · · independent of an iid sequence (Ui)
with a uniform marginal distribution on (0, 1). Then

∑∞
i=1 ε

(Γ
−1/α
i ,Ui)

constitutes PRM(µα ×LEB)

on (0,∞) × (0, 1) and µα(x,∞) = x−α, x > 0. Let (ft)t∈T be non-negative measurable functions
on (0, 1) such that Efα

t (U) < ∞.
We consider the process

Yt = sup
i≥1

Γ
−1/α
i ft(Ui) , t ∈ T ,

and we will show that it is a max-stable process. In view of the defining property (8.2) it suffices
to show that for any distinct ti ∈ T , i = 1, . . . ,m, m ≥ 1, any xi > 0, i = 1, . . . ,m, and k ≥ 1,

P
(

Yt1 ≤ x1, . . . , Ytm ≤ xm

)

= P k
(

Yt1 ≤ x1k
1/α, . . . , Ytm ≤ xmk1/α

)

.(8.3)

We notice that

P
(

Yt1 ≤ x1, . . . , Ytm ≤ xm

)

= P
(

sup
i≥1

Γ
−1/α
i max

1≤j≤m
(ftj (Ui)/xj) ≤ 1

)

.

An application of (8.1) yields

P
(

Yt1 ≤ x1, . . . , Ytm ≤ xm

)

= e−E max1≤j≤m(ftj (U)/xj)α

= e−
R 1

0
max1≤j≤m(ftj (u)/xj)α du .

Then (8.3) is straightforward.

This example already yields an almost complete characterization of the finite-dimensional distri-
butions of a max-stable process. De Haan [59] proved the following result.
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Theorem 8.3. The finite-dimensional distributions of a max-stable sequence (Yt)t∈N with Fréchet

marginals with index α > 0 satisfy the relation

P (Y1 ≤ x1, . . . , Ym ≤ xm) = e
−

R

R
m
+

maxt≤m(yt/xt)α Gm(dy)
, xi > 0 , i = 1, . . . ,m, m ≥ 1 .

where Gm is the m-dimensional restriction to R
m
+ of a finite measure on R

∞
+ . Moreover, there exists

a finite measure ρ on [0, 1] such that (Yt) has representation

Yt = sup
i≥1

Γ
−1/α
i ft(Ti) , t ∈ N ,

where ((Γ
−1/α
i , Ti))i=1,2,... is an enumeration of PRM(µα × ρ) on (0,∞) × [0, 1], (ft) are suitable

non-negative measurable functions on [0, 1] such that Efα
t (T1) =

∫ 1
0 fα

t (x)ρ(dx) < ∞.

De Haan [59] proved a similar result in the case T = R under the additional assumption that
(Yt)t∈Z has stochastically continuous sample paths. Kabluchko [70] proved that any max-stable
process (Yt)t∈T , T ⊂ R, with Fréchet marginals of index α > 0 has representation (on a sufficiently
rich probability space)

Yt = sup
i≥1

Γ
−1/α
i ft(Ti) , t ∈ T ,(8.4)

where (ft)t∈T is a family of non-negative functions in Lα(E, E , ν) and ν is a σ-finite measure on the
Borel σ-field E of the state space E,

∑∞
i=1 ε(Γi,Ti) are the points of a PRM(LEB × ν) on the state

space R+ × E.
Using the same notation, one can introduce de Haan’s [59] extremal integral

∫ ∨

E

fdMα
ν = sup

i≥1
Γ
−1/α
i f(Ti) ,(8.5)

where, as above f is a non-negative function in Lα(E, E , ν), and Mα
ν is an α-Fréchet random sup-

measure with control measure ν. Stoev [114] proved that
∫ ∨

E
fdMα

ν has various properties similar
to the α-stable integrals; see Samorodnitsky and Taqqu [111]. A proof similar to the one in
Example 8.2 yields that

P
(

∫ ∨

E

fdMα
ν ≤ x

)

= exp

{

−x−α

∫

E

fαdν

}

= Φ
R

E
fαdν

α (x) .

The integral representation of a max-stable process is convenient. For example, for any ft ∈
Lα(E, E , ν), xt > 0, t = 1, . . . ,m, m ≥ 1,

P
(

∫ ∨

E

ftdMα
ν ≤ xt, t = 1, . . . ,m

)

= P
(

∫ ∨

E

max
t=1,...,m

(ft/xt)dMα
ν ≤ 1

)

= exp

{

−
∫

E

max
t=1,...,m

(ft/xt)
αdν

}

.

We also have for x = (x1, . . . , xm) > 0 and y → ∞,

y
[

1 − P
(

∫ ∨

E

ftdMα
ν ≤ y1/αxt, t = 1, . . . ,m

)]

= y P
(

y−1/α
(

∫ ∨

E

ftdMα
ν

)

t=1,...,m
6∈ [0,x]

)

= y
(

1 − exp

{

−y−1

∫

E

max
t=1,...,m

(ft/xt)
αdν

}

)

→
∫

E

max
t=1,...,m

(ft/xt)
αdν = µm,α([0,x]c) .(8.6)
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Thus the finite-dimensional distributions of a max-stable process (Yt)t∈T are regularly varying with
index α and limiting measure µm,α given by (8.6).

Recently, strictly stationary max-stable processes (Yt)t∈T for T = Z or T = R have attracted
some attention. Such a process has again integral representation

Yt =

∫ ∨

E

ftdMα
ν , t ∈ T ,(8.7)

where the family of functions (ft) has to satisfy some particular conditions to ensure strict station-
arity, ergodicity, mixing, and other desirable properties; we refer to Kabluchko [70] and Stoev [114]
for details.

Example 8.4. Assume that the strictly stationary max-stable process (Yt)t∈Z has representation
(8.7). Since (Yt) is regularly varying with index α can define its extremogram. For example, the
extremogram with respect to the set (1,∞) is given by

ρ(h) = lim
x→∞

P (x−1Yh > 1 | x−1Y0 > 1)

=
P (x−1 min(Y0, Yh) > 1)

P (Y0 > x)

= lim
x→∞

1 − exp
{

− x−α
∫

E
min(fα

0 , fα
h )dν

}

1 − exp
{

− x−α
∫

E
fα
0 dν

}

=

∫

E
min(fα

0 , fα
h )dν

∫

E
fα
0 dν

.(8.8)

It is also straightforward to calculate the extremal index of (Yt) provided it exists. Indeed, assuming

P (Y0 > an) = 1 − e−a−α
n

R

E
fα
0 dν ∼ n−1, i.e. an ∼ n1/α

( ∫

E
fα
0 dν

)1/α
, we have for x > 0,

P
(

a−1
n max

t=1,...,n
Yt ≤ x

)

= exp

{

−a−α
n x−α

∫

E

max
t=1,...,n

fα
t dν

}

=
[

Φα(x)
]n−1

R

E
maxt=1,...,n fα

t dν

/

R

E
fα
0

dν(1+o(1))
.

If the limit

θY = lim
n→∞

1

n

∫

E
maxt=1,...,n fα

t dν
∫

E
fα
0 dν

exists it is the extremal index of (Yt).

We consider two popular examples of max-stable processes.

Example 8.5. The Brown-Resnick process (see [18]) has representation

Yt = sup
i≥1

Γ
−1/α
i e Wi(t)−0.5 σ2(t) , t ∈ R ,(8.9)

where (Γi) is an enumeration of the points of a unit rate homogeneous Poisson process on (0,∞)
independent of the iid sequence (Wi) of sample continuous mean zero Gaussian processes on R

with stationary increments and variance function σ2. The max-stable process (8.9) is stationary
(Theorem 2 in Kabluchko et al. [71]; in this paper the authors also consider the case of max-stable
random fields, i.e. W is a mean zero Gaussian random field with stationary increments) and its
distribution only depends on the variogram V (h) = var(W (t + h) − W (t)), t ∈ R, h ≥ 0. It follows
from Example 2.1 in Dombry and Eyi-Minko [39] that the functions (ft) in representation (8.4)
satisfy the condition

∫

E

min(fα
0 , fα

h )dν ≤ cΦ(0.5
√

V (h)) ,(8.10)
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where Φ is the standard normal distribution. For example, if W is standard Brownian motion,
V (h) = h, Φ(0.5

√
h) ∼ c e−h/8h−0.5, as h → ∞. Notice that the right-hand side of (8.10) yields

an exponential bound for the extremogram ρ(h) in (8.8). Results in Dombry and Eyi-Minko [39]
also show that (Yt) is strongly mixing with exponential rate αh.

Recently, the Brown-Resnick process has attracted some attention for modeling spatio-temporal
extremes; see [70, 71, 114, 97]. The processes (8.9) can be extended to random fields on R

d. These
fields found various applications for modeling spatio-temporal extremal effects; see Kabluchko et
al. [71], Davis et al. [26], Davison et al. [37]. The paper Davis et al. [34] collects some of the
recent references on max-stable processes.

As a matter of fact, the Brown-Resnick process cannot be simulated in a naive way by mimicing
the formula (8.9) and replacing the supremum over an infinite index set by a finite one. For example,

assume that W is standard Brownian motion. Then (e W (t)−0.5t)t≥0 is a martingale with expectation

1 for every t. On the other hand, by virtue of the law of the iterated logarithm , e W (t)−0.5t → 0 a.s.

exponentially fast as t → ∞. For every finite m, sup1≤i≤m Γ
−1/α
i e Wi(t)−0.5 σ2(t) → 0 exponentially

fast as t → ∞. This fact turns the simulation of (Yt) into a complicated problem; see Oesting et
al. [97].

Using the approach of Lemma 8.1, it is not difficult to see that for 0 < t1 < · · · < tm ≤ T , m ≥ 1,
and fixed T ,

P
(

max
i=1,...,m

Yti ≤ x
)

= exp

{

−x−αE max
i=1,...,m

e α(W (ti)−σ2(ti))

}

,

and using the continuity of the sample paths,

P
(

T−1/α max
0≤t≤T

Yt ≤ x
)

= exp

{

−x−α 1

T
E max

0≤t≤T
e α(W (t)−σ2(t))

}

→ e−x−αcα , x > 0 ,

where

cα = lim
T→∞

1

T
E max

0≤t≤T
e α(W (t)−σ2(t))

exists and is known as Pickands’s constant; see Pickands [101].

Example 8.6. We consider de Haan and Pereira’s [60] max-moving process

Yt = sup
i≥1

Γ
−1/α
i f(t − Ui) , t ∈ R ,(8.11)

where f is a continuous Lebesgue density on R such that
∫

R
sup|h|≤1 f(x+h) dx < ∞ and

∑∞
i=1 ε(Γi,Ui)

are the points of a unit rate homogeneous Poisson random measure on (0,∞) × R.
The resulting process (Yt) is α-max-stable and stationary. According to Example 2.2 in Dombry

and Eyi-Minko [39],
∫

E

min(fα
0 , fα

h )dν ≤ c

∫

R

min(fα(−x), fα(h − x)) dx , h ≥ 0 ,

and the right-hand side is a bound for the strong mixing rate αh as well as for the extremogram
ρ(h). For example, if f is the standard normal density, this implies that (αh) decays to zero faster
than exponentially, i.e. the memory in this sequence is very short.

9. Large deviations

In the previous sections we frequently made use of the principle of a single large jump for a
regularly varying sequence (Xt), i.e. it is often possible to make a statement about the extremal
behavior of a random structure if we know the behavior of its largest component.
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