February 27, 2014

Modeling Heavy-Tailed Time Series

Thomas Mikosch (University of Copenhagen)

For given $\ell \geq 1$, this value equals

$$
\begin{aligned}
& {\left[E\left(1-\mathrm{e}^{-f\left(Y_{0}\right)}\right) I_{\left\{\max _{j=1-l, \ldots,-1}\left|Y_{j}\right| \leq 1\right\}}+E\left(\mathrm{e}^{-f\left(Y_{0}\right)}-\mathrm{e}^{-\sum_{j=0}^{1} f\left(Y_{j}\right)}\right) I_{\left\{\max _{j=2-l, \ldots,-1}\left|Y_{j}\right| \leq 1\right\}}\right.} \\
& \\
& \left.+\cdots+E\left(\mathrm{e}^{-\sum_{j=0}^{\ell-1} f\left(Y_{j}\right)}-\mathrm{e}^{-\sum_{j=0}^{\ell} f\left(Y_{j}\right)}\right) I_{\left\{\max _{j=\ell+1-l, \ldots,-1}\left|Y_{j}\right| \leq 1\right\}}\right] \\
& \\
& +\left[E\left(\mathrm{e}^{-\sum_{j=0}^{\ell} f\left(Y_{j}\right)}-\mathrm{e}^{-\sum_{j=0}^{\ell+1} f\left(Y_{j}\right)}\right) I_{\left\{\max _{j=\ell+2-l, \ldots,-1}\left|Y_{j}\right| \leq 1\right\}}\right. \\
& \\
& \left.+\cdots+E\left(\mathrm{e}^{-\sum_{j=0}^{l-2} f\left(Y_{j}\right)}-\mathrm{e}^{-\sum_{j=0}^{l-1} f\left(Y_{j}\right)}\right)\right] \\
& =I_{\ell}^{(1)}+I_{\ell}^{(2)} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{\ell \rightarrow \infty} \lim _{l \rightarrow \infty} I_{\ell}^{(1)} & =\lim _{\ell \rightarrow \infty} E\left(1-\mathrm{e}^{-\sum_{j=0}^{\ell} f\left(Y_{j}\right)}\right) I_{\left\{\max _{j \leq-1}\left|Y_{j}\right| \leq 1\right\}} \\
& =E\left(1-\mathrm{e}^{-\sum_{j=0}^{\infty} f\left(Y_{j}\right)}\right) I_{\left\{\max _{j \leq-1}\left|Y_{j}\right| \leq 1\right\}}
\end{aligned}
$$

while

$$
\begin{aligned}
& \lim _{\ell \rightarrow \infty} \limsup _{l \rightarrow \infty} I_{\ell}^{(2)} \\
& \leq \limsup _{l \rightarrow \infty}\left[E\left(\mathrm{e}^{-\sum_{j=0}^{\ell} f\left(Y_{j}\right)}-\mathrm{e}^{-\sum_{j=0}^{\ell+1} f\left(Y_{j}\right)}\right)+\cdots+E\left(\mathrm{e}^{-\sum_{j=0}^{l-2} f\left(Y_{j}\right)}-\mathrm{e}^{-\sum_{j=0}^{l-1} f\left(Y_{j}\right)}\right)\right] \\
& \quad=\lim _{\ell \rightarrow \infty} E \mathrm{e}^{-\sum_{j=0}^{\ell} f\left(Y_{j}\right)}-E \mathrm{e}^{-\sum_{j=0}^{\infty} f\left(Y_{j}\right)}=0 .
\end{aligned}
$$

8. Max-stable processes with Fréchet marginals

Max-stable processes and random fields have recently attracted some attention for modeling spatio-temporal extremal phenomena. We give a short overview of results on the topic with special emphasis on max-stable time series.

Recall from Section 2.2 that max-stable distributions are the only non-degenerate limit distributions of (normalized and centered) partial maxima of an iid sequence. In particular, an iid sequence $\left(X_{t}\right)$ with a max-stable distribution satisfies (2.7), i.e.,

$$
c_{n}^{-1}\left(\max \left(X_{1}, \ldots, X_{n}\right)-b_{n}\right) \stackrel{d}{=} X, \quad n \geq 1
$$

for suitable constants $c_{n}>0$ and $d_{n} \in \mathbb{R}$. Here we will assume without loss of generality that X has a Fréchet distribution function $\Phi_{\alpha}(x)=\mathrm{e}^{-x^{-\alpha}}, x>0$, and then $c_{n}=n^{1 / \alpha}$ and $d_{n}=0$.

A Fréchet random variable has the following representation which will be useful.
Lemma 8.1. Let $0<\Gamma_{1}<\Gamma_{2}<\cdots$ be an enumeration of the points of a unit rate homogeneous Poisson process on $(0, \infty)$ independent of an iid sequence $\left(V_{i}\right)$ of positive random variables with $E V^{\alpha}<\infty$ for some $\alpha>0$. Then $\sup _{i>1} \Gamma_{i}^{-1 / \alpha} V_{i}$ has a Fréchet $\Phi_{\alpha}^{E V^{\alpha}}$ distribution.

Proof. Write $N(t)=\#\left\{i \geq 1: \Gamma_{i} \leq t\right\}, t \geq 0$, for the unit rate Poisson process on $(0, \infty)$. Let $\left(U_{t}\right)$ be an iid sequence of random variables with a uniform distribution on (0,1), independent of N and
$\left(V_{t}\right)$. We notice that for $x>0$, using the order statistics property of N,

$$
\begin{align*}
P\left(\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} V_{i} \leq x\right) & =\lim _{t \rightarrow \infty} E\left[P\left(\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} V_{i} \leq x \mid N(t)\right)\right] \\
& =\lim _{t \rightarrow \infty} E\left[P\left(\sup _{i \leq N(t)}\left(t U_{i}\right)^{-1 / \alpha} V_{i} \leq x \mid N(t)\right)\right] \\
& =\lim _{t \rightarrow \infty} E\left[P^{N(t)}\left(\left(t U_{1}\right)^{-1 / \alpha} V_{1} \leq x\right)\right] \\
& =\lim _{t \rightarrow \infty} \mathrm{e}^{-t P\left(V_{1}^{\alpha}>x^{\alpha} t U_{1}\right)} \\
& =\lim _{t \rightarrow \infty} \mathrm{e}^{-x^{-\alpha}} \int_{0}^{t x^{\alpha}} P\left(V_{1}^{\alpha}>y\right) d y \\
& =\mathrm{e}^{-x^{-\alpha} E V^{\alpha}}=\Phi_{\alpha}^{E V^{\alpha}}(x) \tag{8.1}
\end{align*}
$$

In what follows, we will consider extensions of the concept of max-stable distributions to the multivariate case. De Haan [59] introduced the notion of a (positive) max-stable process $\left(Y_{t}\right)_{t \in T}$, $T \subset \mathbb{R}$, by requiring that for iid copies $\left(Y_{t}^{(i)}\right)_{t \in T}, i=1,2, \ldots$, of $\left(Y_{t}\right)_{t \in T}$,

$$
\begin{equation*}
n^{-1 / \alpha}\left(\max _{i=1, \ldots, n} Y_{t}^{(i)}\right)_{t \in T} \stackrel{d}{=}\left(Y_{t}\right)_{t \in T}, \quad n \geq 1 \tag{8.2}
\end{equation*}
$$

Then, in particular, all one-dimensional marginals of the process $\left(Y_{t}\right)_{t \in T}$ are Fréchet distributed, i.e. Y_{t} has distribution $\Phi_{\alpha}^{c(t)}$ for some function $c(t) \geq 0, t \in T$.

Example 8.2. We consider an example from de Haan [59], p. 1195. Consider a unit rate homogeneous Poisson process on $(0, \infty)$ with points $\Gamma_{1}<\Gamma_{2}<\cdots$ independent of an iid sequence $\left(U_{i}\right)$ with a uniform marginal distribution on $(0,1)$. Then $\sum_{i=1}^{\infty} \varepsilon_{\left(\Gamma_{i}^{-1 / \alpha}, U_{i}\right)}$ constitutes $\operatorname{PRM}\left(\mu_{\alpha} \times \mathbb{L} \mathbb{E} \mathbb{B}\right)$ on $(0, \infty) \times(0,1)$ and $\mu_{\alpha}(x, \infty)=x^{-\alpha}, x>0$. Let $\left(f_{t}\right)_{t \in T}$ be non-negative measurable functions on $(0,1)$ such that $E f_{t}^{\alpha}(U)<\infty$.

We consider the process

$$
Y_{t}=\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} f_{t}\left(U_{i}\right), \quad t \in T
$$

and we will show that it is a max-stable process. In view of the defining property (8.2) it suffices to show that for any distinct $t_{i} \in T, i=1, \ldots, m, m \geq 1$, any $x_{i}>0, i=1, \ldots, m$, and $k \geq 1$,

$$
\begin{equation*}
P\left(Y_{t_{1}} \leq x_{1}, \ldots, Y_{t_{m}} \leq x_{m}\right)=P^{k}\left(Y_{t_{1}} \leq x_{1} k^{1 / \alpha}, \ldots, Y_{t_{m}} \leq x_{m} k^{1 / \alpha}\right) \tag{8.3}
\end{equation*}
$$

We notice that

$$
P\left(Y_{t_{1}} \leq x_{1}, \ldots, Y_{t_{m}} \leq x_{m}\right)=P\left(\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} \max _{1 \leq j \leq m}\left(f_{t_{j}}\left(U_{i}\right) / x_{j}\right) \leq 1\right)
$$

An application of (8.1) yields

$$
\begin{aligned}
P\left(Y_{t_{1}} \leq x_{1}, \ldots, Y_{t_{m}} \leq x_{m}\right) & =\mathrm{e}^{-E \max _{1 \leq j \leq m}\left(f_{t_{j}}(U) / x_{j}\right)^{\alpha}} \\
& =\mathrm{e}^{-\int_{0}^{1} \max _{1 \leq j \leq m}\left(f_{t_{j}}(u) / x_{j}\right)^{\alpha} d u}
\end{aligned}
$$

Then (8.3) is straightforward.
This example already yields an almost complete characterization of the finite-dimensional distributions of a max-stable process. De Haan [59] proved the following result.

Theorem 8.3. The finite-dimensional distributions of a max-stable sequence $\left(Y_{t}\right)_{t \in \mathbb{N}}$ with Fréchet marginals with index $\alpha>0$ satisfy the relation

$$
P\left(Y_{1} \leq x_{1}, \ldots, Y_{m} \leq x_{m}\right)=\mathrm{e}^{-\int_{\mathbb{R}_{+}^{m} \max _{t \leq m}\left(y_{t} / x_{t}\right)^{\alpha} G_{m}(d y)}, \quad x_{i}>0, \quad i=1, \ldots, m, \quad m \geq 1}
$$

where G_{m} is the m-dimensional restriction to \mathbb{R}_{+}^{m} of a finite measure on \mathbb{R}_{+}^{∞}. Moreover, there exists a finite measure ρ on $[0,1]$ such that $\left(Y_{t}\right)$ has representation

$$
Y_{t}=\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} f_{t}\left(T_{i}\right), \quad t \in \mathbb{N},
$$

where $\left(\left(\Gamma_{i}^{-1 / \alpha}, T_{i}\right)\right)_{i=1,2, \ldots}$ is an enumeration of $\operatorname{PRM}\left(\mu_{\alpha} \times \rho\right)$ on $(0, \infty) \times[0,1],\left(f_{t}\right)$ are suitable non-negative measurable functions on $[0,1]$ such that $E f_{t}^{\alpha}\left(T_{1}\right)=\int_{0}^{1} f_{t}^{\alpha}(x) \rho(d x)<\infty$.

De Haan [59] proved a similar result in the case $T=\mathbb{R}$ under the additional assumption that $\left(Y_{t}\right)_{t \in \mathbb{Z}}$ has stochastically continuous sample paths. Kabluchko [70] proved that any max-stable process $\left(Y_{t}\right)_{t \in T}, T \subset \mathbb{R}$, with Fréchet marginals of index $\alpha>0$ has representation (on a sufficiently rich probability space)

$$
\begin{equation*}
Y_{t}=\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} f_{t}\left(T_{i}\right), \quad t \in T, \tag{8.4}
\end{equation*}
$$

where $\left(f_{t}\right)_{t \in T}$ is a family of non-negative functions in $L^{\alpha}(\mathbb{E}, \mathcal{E}, \nu)$ and ν is a σ-finite measure on the Borel σ-field \mathcal{E} of the state space $\mathbb{E}, \sum_{i=1}^{\infty} \varepsilon_{\left(\Gamma_{i}, T_{i}\right)}$ are the points of a $\operatorname{PRM}(\mathbb{L E B} \times \nu)$ on the state space $\mathbb{R}_{+} \times \mathbb{E}$.

Using the same notation, one can introduce de Haan's [59] extremal integral

$$
\begin{equation*}
\int_{\mathbb{E}}^{\vee} f d M_{\nu}^{\alpha}=\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} f\left(T_{i}\right), \tag{8.5}
\end{equation*}
$$

where, as above f is a non-negative function in $L^{\alpha}(\mathbb{E}, \mathcal{E}, \nu)$, and M_{ν}^{α} is an α-Fréchet random supmeasure with control measure ν. Stoev [114] proved that $\int_{\mathbb{E}}^{\vee} f d M_{\nu}^{\alpha}$ has various properties similar to the α-stable integrals; see Samorodnitsky and Taqqu [111]. A proof similar to the one in Example 8.2 yields that

$$
\begin{aligned}
P\left(\int_{\mathbb{E}}^{\vee} f d M_{\nu}^{\alpha} \leq x\right) & =\exp \left\{-x^{-\alpha} \int_{\mathbb{E}} f^{\alpha} d \nu\right\} \\
& =\Phi_{\alpha}^{\int_{\mathbb{E}} f^{\alpha} d \nu}(x)
\end{aligned}
$$

The integral representation of a max-stable process is convenient. For example, for any $f_{t} \in$ $L^{\alpha}(\mathbb{E}, \mathcal{E}, \nu), x_{t}>0, t=1, \ldots, m, m \geq 1$,

$$
\begin{aligned}
P\left(\int_{\mathbb{E}}^{\vee} f_{t} d M_{\nu}^{\alpha} \leq x_{t}, t=1, \ldots, m\right) & =P\left(\int_{\mathbb{E}}^{\vee} \max _{t=1, \ldots, m}\left(f_{t} / x_{t}\right) d M_{\nu}^{\alpha} \leq 1\right) \\
& =\exp \left\{-\int_{\mathbb{E}} \max _{t=1, \ldots, m}\left(f_{t} / x_{t}\right)^{\alpha} d \nu\right\}
\end{aligned}
$$

We also have for $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)>\mathbf{0}$ and $y \rightarrow \infty$,

$$
\begin{aligned}
y\left[1-P\left(\int_{\mathbb{E}}^{\vee} f_{t} d M_{\nu}^{\alpha} \leq y^{1 / \alpha} x_{t}, t=1, \ldots, m\right)\right] & =y P\left(y^{-1 / \alpha}\left(\int_{\mathbb{E}}^{\vee} f_{t} d M_{\nu}^{\alpha}\right)_{t=1, \ldots, m} \notin[\mathbf{0}, \mathbf{x}]\right) \\
& =y\left(1-\exp \left\{-y^{-1} \int_{\mathbb{E}} \max _{t=1, \ldots, m}\left(f_{t} / x_{t}\right)^{\alpha} d \nu\right\}\right) \\
& \rightarrow \int_{\mathbb{E}} \max _{t=1, \ldots, m}\left(f_{t} / x_{t}\right)^{\alpha} d \nu=\mu_{m, \alpha}\left([\mathbf{0}, \mathbf{x}]^{\mathbf{c}}\right) .
\end{aligned}
$$

Thus the finite-dimensional distributions of a max-stable process $\left(Y_{t}\right)_{t \in T}$ are regularly varying with index α and limiting measure $\mu_{m, \alpha}$ given by (8.6).

Recently, strictly stationary max-stable processes $\left(Y_{t}\right)_{t \in T}$ for $T=\mathbb{Z}$ or $T=\mathbb{R}$ have attracted some attention. Such a process has again integral representation

$$
\begin{equation*}
Y_{t}=\int_{\mathbb{E}}^{\vee} f_{t} d M_{\nu}^{\alpha}, \quad t \in T \tag{8.7}
\end{equation*}
$$

where the family of functions $\left(f_{t}\right)$ has to satisfy some particular conditions to ensure strict stationarity, ergodicity, mixing, and other desirable properties; we refer to Kabluchko [70] and Stoev [114] for details.

Example 8.4. Assume that the strictly stationary max-stable process $\left(Y_{t}\right)_{t \in \mathbb{Z}}$ has representation (8.7). Since $\left(Y_{t}\right)$ is regularly varying with index α can define its extremogram. For example, the extremogram with respect to the set $(1, \infty)$ is given by

$$
\begin{align*}
\rho(h) & =\lim _{x \rightarrow \infty} P\left(x^{-1} Y_{h}>1 \mid x^{-1} Y_{0}>1\right) \\
& =\frac{P\left(x^{-1} \min \left(Y_{0}, Y_{h}\right)>1\right)}{P\left(Y_{0}>x\right)} \\
& =\lim _{x \rightarrow \infty} \frac{1-\exp \left\{-x^{-\alpha} \int_{\mathbb{E}} \min \left(f_{0}^{\alpha}, f_{h}^{\alpha}\right) d \nu\right\}}{1-\exp \left\{-x^{-\alpha} \int_{\mathbb{E}} f_{0}^{\alpha} d \nu\right\}} \\
& =\frac{\int_{\mathbb{E}} \min \left(f_{0}^{\alpha}, f_{h}^{\alpha}\right) d \nu}{\int_{\mathbb{E}} f_{0}^{\alpha} d \nu} . \tag{8.8}
\end{align*}
$$

It is also straightforward to calculate the extremal index of $\left(Y_{t}\right)$ provided it exists. Indeed, assuming $P\left(Y_{0}>a_{n}\right)=1-\mathrm{e}^{-a_{n}^{-\alpha} \int_{\mathbb{E}} f_{0}^{\alpha} d \nu} \sim n^{-1}$, i.e. $a_{n} \sim n^{1 / \alpha}\left(\int_{\mathbb{E}} f_{0}^{\alpha} d \nu\right)^{1 / \alpha}$, we have for $x>0$,

$$
\begin{aligned}
P\left(a_{n}^{-1} \max _{t=1, \ldots, n} Y_{t} \leq x\right) & =\exp \left\{-a_{n}^{-\alpha} x^{-\alpha} \int_{\mathbb{E}} \max _{t=1, \ldots, n} f_{t}^{\alpha} d \nu\right\} \\
& =\left[\Phi_{\alpha}(x)\right]^{n^{-1} \int_{\mathbb{E}} \max _{t=1, \ldots, n} f_{t}^{\alpha} d \nu / \int_{\mathbb{E}} f_{0}^{\alpha} d \nu(1+o(1))}
\end{aligned}
$$

If the limit

$$
\theta_{Y}=\lim _{n \rightarrow \infty} \frac{1}{n} \frac{\int_{\mathbb{E}} \max _{t=1, \ldots, n} f_{t}^{\alpha} d \nu}{\int_{\mathbb{E}} f_{0}^{\alpha} d \nu}
$$

exists it is the extremal index of $\left(Y_{t}\right)$.
We consider two popular examples of max-stable processes.
Example 8.5. The Brown-Resnick process (see [18]) has representation

$$
\begin{equation*}
Y_{t}=\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} \mathrm{e}^{W_{i}(t)-0.5 \sigma^{2}(t)}, \quad t \in \mathbb{R} \tag{8.9}
\end{equation*}
$$

where $\left(\Gamma_{i}\right)$ is an enumeration of the points of a unit rate homogeneous Poisson process on $(0, \infty)$ independent of the iid sequence $\left(W_{i}\right)$ of sample continuous mean zero Gaussian processes on \mathbb{R} with stationary increments and variance function σ^{2}. The max-stable process (8.9) is stationary (Theorem 2 in Kabluchko et al. [71]; in this paper the authors also consider the case of max-stable random fields, i.e. W is a mean zero Gaussian random field with stationary increments) and its distribution only depends on the variogram $V(h)=\operatorname{var}(W(t+h)-W(t)), t \in \mathbb{R}, h \geq 0$. It follows from Example 2.1 in Dombry and Eyi-Minko [39] that the functions $\left(f_{t}\right)$ in representation (8.4) satisfy the condition

$$
\begin{equation*}
\int_{\mathbb{E}} \min \left(f_{0}^{\alpha}, f_{h}^{\alpha}\right) d \nu \leq c \bar{\Phi}(0.5 \sqrt{V(h)}) \tag{8.10}
\end{equation*}
$$

where Φ is the standard normal distribution. For example, if W is standard Brownian motion, $V(h)=h, \bar{\Phi}(0.5 \sqrt{h}) \sim c \mathrm{e}^{-h / 8} h^{-0.5}$, as $h \rightarrow \infty$. Notice that the right-hand side of (8.10) yields an exponential bound for the extremogram $\rho(h)$ in (8.8). Results in Dombry and Eyi-Minko [39] also show that $\left(Y_{t}\right)$ is strongly mixing with exponential rate α_{h}.

Recently, the Brown-Resnick process has attracted some attention for modeling spatio-temporal extremes; see [70, 71, 114, 97]. The processes (8.9) can be extended to random fields on \mathbb{R}^{d}. These fields found various applications for modeling spatio-temporal extremal effects; see Kabluchko et al. [71], Davis et al. [26], Davison et al. [37]. The paper Davis et al. [34] collects some of the recent references on max-stable processes.

As a matter of fact, the Brown-Resnick process cannot be simulated in a naive way by mimicing the formula (8.9) and replacing the supremum over an infinite index set by a finite one. For example, assume that W is standard Brownian motion. Then $\left(\mathrm{e}^{W(t)-0.5 t}\right)_{t \geq 0}$ is a martingale with expectation 1 for every t. On the other hand, by virtue of the law of the iterated logarithm, $\mathrm{e}^{W(t)-0.5 t} \rightarrow 0$ a.s. exponentially fast as $t \rightarrow \infty$. For every finite m, $\sup _{1 \leq i \leq m} \Gamma_{i}^{-1 / \alpha} \mathrm{e}^{W_{i}(t)-0.5 \sigma^{2}(t)} \rightarrow 0$ exponentially fast as $t \rightarrow \infty$. This fact turns the simulation of $\left(Y_{t}\right)$ into a complicated problem; see Oesting et al. [97].

Using the approach of Lemma 8.1, it is not difficult to see that for $0<t_{1}<\cdots<t_{m} \leq T, m \geq 1$, and fixed T,

$$
P\left(\max _{i=1, \ldots, m} Y_{t_{i}} \leq x\right)=\exp \left\{-x^{-\alpha} E \max _{i=1, \ldots, m} \mathrm{e}^{\alpha\left(W\left(t_{i}\right)-\sigma^{2}\left(t_{i}\right)\right)}\right\}
$$

and using the continuity of the sample paths,

$$
\begin{aligned}
P\left(T^{-1 / \alpha} \max _{0 \leq t \leq T} Y_{t} \leq x\right) & =\exp \left\{-x^{-\alpha} \frac{1}{T} E \max _{0 \leq t \leq T} \mathrm{e}^{\alpha\left(W(t)-\sigma^{2}(t)\right)}\right\} \\
& \rightarrow \mathrm{e}^{-x^{-\alpha} c_{\alpha}}, \quad x>0
\end{aligned}
$$

where

$$
c_{\alpha}=\lim _{T \rightarrow \infty} \frac{1}{T} E \max _{0 \leq t \leq T} \mathrm{e}^{\alpha\left(W(t)-\sigma^{2}(t)\right)}
$$

exists and is known as Pickands's constant; see Pickands [101].
Example 8.6. We consider de Haan and Pereira's [60] max-moving process

$$
\begin{equation*}
Y_{t}=\sup _{i \geq 1} \Gamma_{i}^{-1 / \alpha} f\left(t-U_{i}\right), \quad t \in \mathbb{R} \tag{8.11}
\end{equation*}
$$

where f is a continuous Lebesgue density on \mathbb{R} such that $\int_{\mathbb{R}} \sup _{|h| \leq 1} f(x+h) d x<\infty$ and $\sum_{i=1}^{\infty} \varepsilon_{\left(\Gamma_{i}, U_{i}\right)}$ are the points of a unit rate homogeneous Poisson random measure on $(0, \infty) \times \mathbb{R}$.

The resulting process $\left(Y_{t}\right)$ is α-max-stable and stationary. According to Example 2.2 in Dombry and Eyi-Minko [39],

$$
\int_{\mathbb{E}} \min \left(f_{0}^{\alpha}, f_{h}^{\alpha}\right) d \nu \leq c \int_{\mathbb{R}} \min \left(f^{\alpha}(-x), f^{\alpha}(h-x)\right) d x, \quad h \geq 0
$$

and the right-hand side is a bound for the strong mixing rate α_{h} as well as for the extremogram $\rho(h)$. For example, if f is the standard normal density, this implies that $\left(\alpha_{h}\right)$ decays to zero faster than exponentially, i.e. the memory in this sequence is very short.

9. Large deviations

In the previous sections we frequently made use of the principle of a single large jump for a regularly varying sequence $\left(X_{t}\right)$, i.e. it is often possible to make a statement about the extremal behavior of a random structure if we know the behavior of its largest component.

References

[1] Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.) (2009) The Handbook of Financial Time Series. Springer, Heidelberg.
[2] Asmussen, S. and Albrecher, H. (2010) Ruin Probabilities. 2nd edition. World Scientific Publishing, Singapore.
[3] Asmussen, S., Blanchet, J., Juneja, S. and Rojas-Nandayapa, L. (2001) Efficient simulation of tail probabilities of sums of correlated logormals. Ann. Oper. Res. 189, 5-23.
[4] Asmussen, S. and Rojas-Nandayapa, L. (2008) Asymptotics of sums of lognormal random variables with Gaussian copula. Stat. Probab. Letters 78, 2709-2714.
[5] Balan, R.M. and Louhichi, S. (2009) Convergence of point processes with weakly dependent points. J. Theor. Probab. 22, 955-982.
[6] Basrak, B., Davis, R.A. and Mikosch, T. (2002) Regular variation of GARCH processes. Stoch. Proc. Appl. 99, 95-116.
[7] Basrak, B. and Segers J. (2009) Regularly varying multivariate time series. Stoch. Proc. Appl. 119, 10551080.
[8] Billingsley, P. (1968) Convergence of Probability Measures. (1968) Wiley, New York.
[9] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Cambridge University Press, Cambridge.
[10] Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307-327.
[11] Bougerol, P. and Picard, N. (1992) Strict stationarity of generalized autoregressive processes. Ann. Probab. 20, 1714-1730.
[12] Bradley, R.C. (2005) Basic properties of strong mixing conditions. A survey and some open questions.Probab. Surv. 2, 107-144.
[13] Bradley, R.C. (2007) Introduction to Strong Mixing Conditions. Volumes 1-3. Kendrick Press, Heber City, UT,
[14] Brandt, A. (1986) The stochastic equation $Y_{n+1}=A_{n} Y_{n}+B_{n}$ with stationary coefficients. Adv. Appl. Probab. 18, 211-220.
[15] Braverman, M., Mikosch, T. and G. Samorodnitsky (2002) The tail behaviour of subadditive functionals acting on Lévy processes. Ann. Appl. Probab. 12 (2002), 69-100.
[16] Breiman, L. (1965) On some limit theorems similar to the arc-sin law. Theory Probab. Appl. 10, 323-331.
[17] Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, 2nd edition Springer-Verlag, New York.
[18] Brown, B. and Resnick, S.I. (1977) Extreme values of independent stochastic processes. J. Appl. Probab. 14, 732-739.
[19] Buraczewski, D., Damek, E., Mikosch, T. and Zienkiewicz, J. (2013) Large deviations for solutions to stochastic recurrence equations under Kesten's condition. Ann. Probab. 41, 2755-2790
[20] Chistyakov, V.P. (1964) A theorem on sums of independent positive random variables and its applications to branching processes. Theory Probab. Appl. 9, 640-648.
[21] Clark, P.K. (1973) A subordinated stochastic process model with fixed variance for speculative prices. Econometrica 41, 135-156.
[22] Cline, D.B.H. and Hsing, T. 1998. Large deviation probabilities for sums of random variables with heavy or subexponential tails, Technical Report, Texas A\& M University.
[23] Cline, D.B.H. and Resnick, S.I. (1992) Multivariate subexponential distributions. Stoch. Proc. Appl. 42, 49-72.
[24] Cline, D.B.H. and Samorodnitsky, G. (1994) Subexponentiality of the product of independent random variables. Stoch. Proc. Appl. 49, 75-98.
[25] Davis, R.A. and Hsing, T. (1995) Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23, 879-917.
[26] Davis, R.A., Klüppelberg, C. and Steinkohl, C. (2013) Statistical inference for max-stable processes in space and time. J. Royal Statist. Soc., Series B, to appear.
[27] Davis, R.A. and Mikosch, T. (1998) Limit theory for the sample ACF of stationary process with heavy tails with applications to ARCH. Ann. Statist. 26, 2049-2080.
[28] Davis, R.A. and Mikosch, T. (2009) The extremogram: a correlogram for extreme events. Bernoulli 15, 977-1009.
[29] Davis, R.A. and Mikosch, T. (2009) Probabilistic models of stochastic volatility models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.) The Handbook of Financial Time Series. Springer, Heidelberg, pp. 255-268.
[30] Davis, R.A. and Mikosch, T. (2009) Extreme value theory for GARCH processes. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.) The Handbook of Financial Time Series. Springer, Heidelberg, pp. 187-200.
[31] Davis, R.A. and Mikosch, T. (2009) Extremes of stochastic volatility models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.) The Handbook of Financial Time Series. Springer, Heidelberg, pp. 355-364.
[32] Davis, R.A., Mikosch, T. and Pfaffel, O. (2013) Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series. Technical report.
[33] Davis, R.A., Mikosch, T. and Cribben, I. (2012) Towards estimating extremal serial dependence via the bootstrapped extremogram. J. Econometrics 170, 142-152.
[34] Davis, R.A., Mikosch, T. and Y. Zhao (2013) Measures of serial extremal dependence and their estimation. Stoch. Proc. Appl. 123, 2575-2602.
[35] Davis, R.A. and Resnick, S.I. (1985) Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13, 179-195.
[36] Davis, R.A. and Resnick, S.I. (1996) Limit theory for bilinear processes with heavy-tailed noise Ann. Appl. Probab. 6, 1191-1210.
[37] Davison, A.C., Padoan, S.A. and Ribatet, M. (2012) Statistical modeling of spatial extremes. Statist. Sci. 27, 161-186.
[38] Denisov, D., Dieker, A.B. and Shneer, V. (2008) Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36, 1946-1991.
[39] Dombry, C. and Eyi-Minko, F. (2012) Strong mixing properties of max-infinitely divisible random fields. Stoch. Proc. Appl. 122, 3790-3811.
[40] Doukhan, P. (1994) Mixing. Properties and Examples. Lecture Notes in Statistics 85. Springer-Verlag, New York.
[41] Embrechts, P. and Hashorva, E. (2013) Aggregation of log-linear risks. Technical report.
[42] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997) Modelling Extremal Events for Insurance and Finance. Springer, Berlin.
[43] Embrechts, P. and Veraverbeke, N. (1982) Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance: Math. Econom. 1, 55-72.
[44] Engle, R.F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987-1007.
[45] Engle, R.F. and Bollerslev, T. (1986) Modelling the persistence of conditional variances. With comments and a reply by the authors. Econometric Rev. 5, 1-87.
[46] Falk, M., Hüsler, J. and Reiss, R.-D. (2004) Laws of Small Numbers: Extremes and Rare Events. 2nd Edition. Birkhäuser, Basel.
[47] Feller, W. (1971) An Introduction to Probability Theory and Its Applications. Vol. II. Second edition. Wiley, New York.
[48] FrancQ, C. and Zakoian, J.-M. (2010) GARCH Models. Wiley, Chichester.
[49] Glasserman, P. (2004) Monte Carlo Methods in financial Engineering. Springer, New York.
[50] Goldie, C.M. (1991) Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1, 126-166.
[51] Goldie, C.M. and Grübel, R. (1996) Perpetuities with thin tails. Adv. Appl. Probab. 28, 463-480.
[52] Goldie C.M. and Klüppelberg, C. (1998) Subexponential distributions. In: Adler, R.J., Feldman, R.E. and Taqqu M.S. (Eds.) A Practical Guide to Heavy Tails. Birkhäuser, Boston, pp. 435-460.
[53] Goldie, C.M. and Maller, R.A. (2000) Stability of perpetuities. Ann. Probab. 28, 1195-1218.
[54] Gnedenko, B.V. (1943) Sur la distribution limité du terme d'une série aléatoire. Ann. Math. 44, 423-453.
[55] Gnedenko, B.V. and Kolmogorov, A.N. (1954) Limit Theorems for Sums of Independent Random Variables. Addison-Wesley, Cambridge, Mass.
[56] Grey, D.R. (1994) Variation in the tail behavior of solutions to random difference equations. Ann. Appl. Probab. 4, 169-183.
[57] Grincevičius, A.K. (1975) Random difference equations and renewal theory for products of random matrices. Lithuanian Math. J. 15, 580-589.
[58] Gulisashvili, A. and Tankov, P. (2013) Tail behavior of sums and differences of log-normal random variables. Technical report.
[59] Hadn, L. de (1984) A spectral representation for max-stable processes. Ann. Probab. 12, 1194-1204.
[60] Hafn, L. de and Pereira, T.T. (2006) Spatial extremes: models for the stationary case. Ann. Statist. 34, 146-168.
[61] Hafn, L. de and Resnick, S. I. (1977) Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie verw. Geb. 40, 317-337.
[62] Hann, L. de, Resnick, S.I., Rootzén, H. and Vries, C.G. de (1989) Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes. Stoch. Proc. Appl. 32, 213-224.
[63] Hitczenko, P. and Wesolowski, J. (2009) Perpetuities with thin tails revisited. Ann. Appl. Probab. 19, 2080-2101.
[64] Hult, H. and Lindskog, F. (2005) Extremal behavior of regularly varying stochastic processes. Stoch. Proc. Appl. 115, 249-274.
[65] Hult, H. and Lindskog, F. (2006) Regular variation for measures on metric space. Publ. de l'Inst. Math. Nouvelle série. 80(94), 121-140.
[66] Hult, H., Lindskog, F., Mikosch, T., and Samorodnitsky, G. (2005) Functional large deviations for multivariate regularly varying random walks. Ann. Appl. Probab. 15, 2651-2680.
[67] Hult, H., Lindskog, F., Hammarlid, O. and Rehn, C.J. (2012) Risk and Portfolio Analysis. Principles and Methods. Springer, New York.
[68] Ibragimov, I.A. and Linnik, Yu.V. (1971) Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
[69] Jacobsen, M., Mikosch, T., Rosiński, J. and Samorodnitsky, G. (2009) Inverse problems for regular variation of linear filters, a cancellation property for σ-finite measures and identification of stable laws. Ann. Appl. Probab. 19, 210-242.
[70] Kabluchko, Z. (2009) Spectral representations of sum- and max-stable processes. Extremes 12, 401-424.
[71] Kabluchko, Z., Schlather, M. and Haan, L. de (2009) Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37, 2042-2065.
[72] Kallenberg, O. (1983) Random Measures, 3rd edition. Akademie-Verlag, Berlin.
[73] Kesten, H. (1973) Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207-248.
[74] Konstantinides, D. and Mikosch, T. (2005) Stochastic recurrence equations with heavy-tailed innovations. Ann. Probab. 33, 1992-2035.
[75] Leadbetter, M.R. (1983) Extremes and local dependence of stationary sequences. Z. Wahrscheinlichkeitstheorie verw. Gebiete 65, 291-306.
[76] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983) Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin.
[77] Ledoux, M. and Talagrand, M. (1991) Probability in Banach Spaces. Isoperimetry and Processes. Springer, Berlin.
[78] Leland, W.E., Murad M.S., Willinger, W. and Wilson, D.V. (1993) On the self-similar nature of Ethernet traffic. ACM/SIGCOMM'93. Computer Communication Review 23, 183-193.
Reprinted in Trends in Networking - Internet, the conference book of the Spring 1995 Conference of the National Unix User Group of the Netherlands (NLUUG).
Also reprinted in Computer Communication Review, 25, Nb. 1 (1995), 202-212, a special anniversary issue devoted to "Highlights from 25 years of the Computer Communications Review".
[79] Leland, W.E., Murad M.S., Willinger, W. and Wilson, D.V. (1994) On the self-similar nature of Ethernet traffic (Extended Version) IEEE/ACM Transactions in Networking 2, 1-15.
[80] Loynes, R.M. (1965) Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36, 993-999.
[81] Lukacs, E. (1970) Characteristic Functions. Second edition. Hafner Publishing Co., New York.
[82] McNeil, A.J., Frey, R.and Embrechts, P. (2005) Quantitative Risk Management. Concepts, Techniques and Tools. Princeton University Press, Princeton (NJ).
[83] Meyn, S. and Tweedie, R.L. (2009) Markov Chains and Stochastic Stability. 2nd Edition. Cambridge University Press, Cambridge (UK).
[84] Miкosch, T. and Rezapur, M. (2013) Stochastic volatility models with possible extremal clustering. Bernoulli to appear.
[85] Mikosch, T. and Samorodnitsky, G. (2000) The supremum of a negative drift random walk with dependent heavy-tailed steps. Ann. Appl. Probab. 10, 1025-1064.
[86] Miкosch, T. and Stărică, C. (2000) Limit theory for the sample autocorrelations and extremes of a $\operatorname{GARCH}(1,1)$ process. Ann. Statist. 28, 1427-1451.
[87] Mikosch, T. and Wintenberger, O. (2013) Precise large deviations for dependent regularly varying sequences. Probab. Theory Rel. Fields, to appear.
[88] Mikosch, T. and Wintenberger, O. (2013) The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains. Probab. Theory Rel. Fields, to appear.
[89] Mikosch, T. and Zhao, Y. (2013) A Fourier analysis of extreme events. Bernoulli, to appear.
[90] Mokkadem, A. (1990) Propriétés de mélange des processus autorégressifs polynomiaux. Ann. Inst. H. Poincaré Probab. Statist. 26, 219-260.
[91] Nagaev, A.V. (1969) Integral limit theorems for large deviations when Cramér's condition is not fulfilled I,II. Theory Probab. Appl. 14, 51-64 and 193-208.
[92] Nagaev, S.V. (1979) Large deviations of sums of independent random variables. Ann. Probab. 7, 745-789.
[93] Nelson, D.B. (1990) Stationarity and persistence in the GARCH $(1,1)$ model. Econometric Theory 6, 318-334.
[94] Newell, G.F. (1964) Asymptotic extremes for mdependent random variables. Ann. Math. Statist. 35, 13221325.
[95] OBrien, G.L. (1974) Limit theorems for the maximum term of a stationary process. Ann. Probab. 2, 540-545.
[96] OBrien, G.L. (1987) Extreme values for stationary and Markov sequences. Ann. Probab. 15, 281-291.
[97] Oesting, M., Kabluchko, Z. and Schlather, M. (2012) Simulation of Brown-Resnick processes. Extremes 15, 89-107.
[98] Pham, T.D. and Tran, L.T. (1985) Some mixing properties of time series models. Stoch. Proc. Appl. 19, 279-303.
[99] Petrov, V.V. (1975) Sums of Independent Random Variables. Springer, Berlin.
[100] Petrov, V.V. (1995) Limit Theorems of Probability Theory. Sequences of Independent Random Variables. Oxford Studies in Probability, 4. Oxford University Press, New York.
[101] Pickands III, J. (1969) Asymptotic properties of the maximum in a stationary Gaussian process. Trans. Amer. Math. Soc. 145, 75-86.
[102] Resnick, S.I. (1986) Point processes, regular variation and weak convergence. Adv. Appl. Prob. 18, 66-138.
[103] Resnick, S.I. (1987) Extreme Values, Regular Variation, and Point Processes. Springer, New York.
[104] Resnick, S.I. (1992) Adventures in Stochastic Processes. Birkhäuser, Boston.
[105] Resnick, S.I. (2007) Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York.
[106] Rojas-Nandayapa, L. (2008) Risk Probabilities: Asymptotics and Simulation. PhD Thesis, Department of Mathematical Sciences, University of Aarhus.
[107] Rootzén, H. (1978) Extremes of moving averages of stable processes. Ann. Probab. 6, 847-869.
[108] Rootzén, H. (1986) Extreme value theory for moving average processes. Ann. Probab. 14, 612-652.
[109] Rosenblatt, M. (1956) A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U. S. A. 42, 43-47.
[110] Rvačeva, E.L. (1962) On domains of attraction of multi-dimensional distributions. Select. Transl. Math. Statist. and Probability of the AMS 2. 183-205.
[111] Samorodnitsky, G. and Taqqu, M.S. (1994) Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman and Hall, London.
[112] Segers, J. (2005) Approximate distributions of clusters of extremes. Stat. Probab. Letters 74, 330-336.
[113] Shephard, N. and Andersen, T.G. (2009) Stochastic volatility: origins and overview. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.) The Handbook of Financial Time Series. Springer, Heidelberg, pp. 233-254.
[114] Stoev, S.A. (2008) On the ergodicity and mixing of max-stable processes. Extremes 118, 1679-1705.
[115] Vervaat, W. (1979) On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Probab. 11, 750-783.

